So, two recent papers tried to address this question - do photosynthetic bacteria exhibit circadian rhythms? And the results of the two studies, in two different species of bacteria, have some interesting similarities to each other, so let's look at them in parallel.
Van Praag et al.[3], used Rhodospirillum rubrum, a gram-negative purple non-sulfur bacteria. Min et al.[4], also chose a purple photosynthetic bacterium Rhodobacter sphaeroides. In the former, the measured output was hydrogenase uptake, while in the latter a battery of luciferase reporter genes was inserted in the genome - strains exhibiting fluoresecence (presumably those in which the construct got inserted behind a promoter) were used in the study.




Again, rhythms were observed in all three groups. What was observed was a difference in phase at which the rhythm begins dependent on the type of entraining cycle preceding the testing. The most important difference, however, was the difference in the freerunning period between the aerobic and anaerobic treatments. In the aerobic group, period was circadian: 20.5 hours. In the anaerobic conditions, the period was ultradian: 10.6 and 12.7 in groups II and III respectively.
What does this all mean? Temperature, light and oxygenation all appeared to have an effect on period. These experiments are difficult to do - if one was working with rodents or insects, the natural thing would be to test a large number of animals at several different temperatures to test for the possible lack of temperature compensation of the circadian rhythm, as well as at several different light intensities to test for the Aschoff's Rule. It is possible that this is a circadian clock that is not well temperature compensated, that is extremely sensitive to light, and that is based on the red-ox environment.
The way the studies have been reported, it is not clear that the rhythms are actually circadian, or if it just happened that some of the rhythms fell into the circadian range by accident. What is clear is that these bacteria generate endogenous rhythms. Are these rhythms circadian or not, and if so, are they driven by core-clock genes kaiA, kaiB and kaiC remains to be elucidated in the future.
[1] Aoki S, Kondo T, Wada H, and Ishiura M (1997) Circadian rhythm of the cyanobacterium Synechocystis sp. strain PCC 6803 in the dark. J Bacteriology 179:5751-5755.
[2] Chen YB, Domonic B, Mellon MT, and Zehr JP (1998) Circadian rhythm of nitrogenase gene expression in the diazotrophic filamentous nonheterocystous cyanobacterium Trichodesmium sp. strain IMS 101. J Bacteriology 180:3598-3605.
[3] Esther Van Praag, Robert Degli Agosti and Reinhard Bachofen, Rhythmic Activity of Uptake Hydrogenase in the Prokaryote Rhodospirillum rubrum, JOURNAL OF BIOLOGICAL RHYTHMS, Vol. 15 No. 3, June 2000 218-224
[4] Hongtao Min, Haitao Guo, Jin Xiong, Rhythmic gene expression in a purple photosynthetic bacterium, Rhodobacter sphaeroides, FEBS Letters 579 (2005) 808–812
Previously in this series:
Circadian Clocks in Microorganisms
Clocks in Bacteria I: Synechococcus elongatus
Clocks in Bacteria II: Adaptive Function of Clocks in Cyanobacteria
Clocks in Bacteria III: Evolution of Clocks in Cyanobacteria
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.